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Abstract 

This paper explores how social networks influence regional economic development on the base of 

different types of knowledge externalities in metropolitan areas versus smaller regions. In order to 

address the above issue, we construct a weighted co-worker network for the entire Swedish economy 

1990-2008 and aggregate tie weights on plant- and industry-region levels. We argue that co-worker 

networks across plants within industry-regions are important for creating MAR type of knowledge 

externalities; while networks across industry-regions are important for Jacobs externalities. Indeed, 

we find evidence that growing density of the plant-level network has a positive effect on wages; 

however, triadic closure of ties is negatively linked to wages. We also find that few strong links to other 

industries – as opposed to diversity – enhance wage levels in all types of regions. However, links to 

unrelated industries are only important in metropolitan areas; whereas links to skill-related industries 

only have a positive effect on development in smaller regional centres. 
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1. Introduction 

The spatial dimension of network-related learning is a core interest of economic geography (Bathelt 

and Glückler, 2003, Ter Wal and Boschma, 2009). It is well understood now that transaction costs are 

diminished by physical proximity as well as personal connections, which enhance the efficiency of 

mutual learning (Borgatti et al, 2009, Maskell and Malmberg, 1999). It is also claimed that most of the 

learning processes occur within certain spatial proximity despite distant, and presumably weak, ties 

might provide the region with new knowledge (Bathelt et al, 2004, Glückler, 2007). We also understand 

that not the social network per se but its’ interplay with industry structure is crucial for learning 

because cognitive, institutional, and organizational proximities are very important for mutual 

understanding (Boschma, 2005). Despite the central interest, our knowledge about the effect of social 

networks on regional development is still limited, which is partly due to data access difficulties. Our 

paper aims to contribute to the literature in this regard by constructing a large-scale co-worker 

network across plants and industry-regions and analysing the network effect on regional development 

(Kemeny and Storper, 2014).  

Co-worker networks are important for regional development, because most of the knowledge sharing 

occurs at workplaces (Storper and Venables, 2004), which enables employees to establish cognitive 

and social proximities that might be maintained even after moving from one workplace to another 

(Boschma and Frenken, 2011). Therefore, co-worker ties can help co-located former colleagues to 

share knowledge, which favours regional development. Despite the lasting characteristics of co-

inventors have been found important for later patenting collaborations (Agrawal et al, 2006, Breschi 

and Lissoni, 2009) and the evidence of information diffusion in co-worker networks (Calvo-Armengol 

and Jackson, 2004, Granovetter, 1995), very limited research was devoted to the effect of co-worker 

networks in economic geography. We argue that the co-worker approach established in a previous 

paper (Lengyel and Eriksson, 2015) can be used to analyse the effect of knowledge externalities in 

regional development. 

Similar ideas to the network-related learning have been present in the economic geography literature. 

For example, strong social ties within certain sectors in specialized industrial districts are claimed to 

enhance the prevalence of Marshallian externalities fostering incremental innovation and productivity 

growth (Amin, 2000, Asheim, 1996, Malmberg, 1997). In a similar fashion, diverse networks across 

industries in urban areas are often associated with Jacobsian externalities, thus potential new 

combinations of information, and radical innovation (Glaeser et al, 1992, Feldman, 1999). It has been 

shown that the above distinction between the prevailing and different knowledge externalities in 

metropolitan and specialized regions oversimplifies the actual processes for two reasons. First, 

Marshallian knowledge externalities might also operate within industries in large metropolitan areas 

(Kemeny and Storper, 2014) and second, diversity of networks per se cannot describe the extent of 

new knowledge creation because the relatedness of the sectors matter (Frenken et al, 2007). Although 

relatedness is a central concept in the recent literature of evolutionary economic geography (Neffke 

and Henning, 2013), the local effects of the links to related and unrelated industries remained unclear 

until now. In this paper we look at the role of Marshallian and Jacobsian externalities as well as the 

connections to related and unrelated industries in one empirical framework.  

Based on a new probability measure of workplace-based acquaintance developed in a previous paper 

(Lengyel and Eriksson, 2015), we generate the co-worker network for the entire Swedish economy 
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1990-2008 tracing the most probable co-worker ties of every employee and from every year through 

the full period. We also compute the strength of individual ties by calculating the length of the period 

of co-working that enhances strength and diminish strength over time after the termination of co-

worker status. As result, we get a dynamically changing social network, with many weak and few strong 

ties. The major promise of the new co-worker approach is its micro-perspective, which also allows us 

to aggregate tie weights on plant and industry-region level. 

We claim to make three contributions to the existing literature. First, we find that a growing density of 

the plant network within industry-regions is positively linked to wage, having a stable effect in every 

type of regions and all models. Thus, Marshallian externalities operate within every indsuytry 

specialization regardless of region size. However, we also find that transitivity or triadic closure in the 

plant network has a negative effect on wage, which suggests that the combination of non-redundant 

knowledge is important within industries as well. Second, diversity of links to other industries has a 

negative effect on wage levels in every type of regions suggesting that knowledge externalities might 

rather occur across few but strong cross-industry links. These results also imply that Jacobsian 

externalities should not be derived from the diversity of cross-industry networks per se. Third, we show 

that links to unrelated industries are more important than to related industries in metropolitan 

regions; while links to related industries are only important in smaller regional centres.  Thus, the co-

worker approach demonstrates that only the related-unrelated dimension of cross-industry links can 

tell urban areas from smaller regions in terms of the prevailing knowledge externalities. 

 

2. Methods of network creation and data processing 

2.1 Probability and strength of co-worker ties 

We propose that employee i and employee j working for in the same workplace at the same period of 

time know each other with probability Pij [0,1] and maintain a tie Lij with strength Wij even after the 

termination of the co-workership. The probability of the tie can be formulated as 

𝑃𝑖𝑗 =
𝑙𝑛 𝑁

𝑁
+ ∑ (

𝑙𝑛 𝑁𝑚

𝑁𝑚
/ 

𝑁𝑚

𝑁
)𝑀

𝐺=1 × 𝛿𝑖𝑗 ,    (1) 

where N denotes plant size, G ∈ {1, 2, … 𝑀} denotes those characteristics we use for similarity 

measurement; Nm denotes subgroup size according to feature m and 𝛿𝑖𝑗  equals 1 if employee i and j 

are similar according to feature m and 0 otherwise. The formulation is based on an initial probability 

inversely proportional to plant size, which prevents all individuals from being isolated within the plant 

(Erdős and Rényi, 1959). This probability is increased when i and j are similar given certain individual 

characteristics, which is built on the homophily literature of social networks (Currarini et al, 2009, 

McPherson et al, 2001). Detailed discussion of the method and network generation can be found in 

Lengyel and Eriksson (2015).  

In this paper, we introduce the strength of co-worker ties of individuals at distinct plants as the function 

of time of co-working and time spent after termination of co-workership, which can be formulated as 

𝑊𝑖𝑗
𝑡 =  𝑊𝑖𝑗

0  ×  𝑒−𝜆𝑡
 ,      (2) 

where 
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𝑊𝑖𝑗
0 = ln(tl−tf + 1).     (3) 

Here, tl refers to the last and tf to the first year of co-worker status of Lij; thus, 𝑊𝑖𝑗
0

 denotes the strength 

of Lij by the termination of the co-workership. Motivated by sociology literature, natural logarithm is 

used to index duration of co-workership because “returns in terms of tie strength to increased duration 

of a relationship decline with increasing length of acquaintance” (Marsden and Campbell 1984, p. 488). 

We apply exponential time decay in Eq. 2 for the calculation of 𝑊𝑖𝑗
𝑡  reflecting the phenomena that the 

tie is losing from strength after the termination of co-workership but the slope of the decay becomes 

sharp only few years after the termination and smoothes out again later (Jin et al, 2001). A λ=0.05 was 

chosen for the exponential decay constant; consult Appendix 1 for more discussion on λ values and 

the visual representation of tie strength. 

2.2 Network aggregation 

The above methodology will generate a weighted individual-level co-worker network for every year 

that we can aggregate on plant, firm, industry or regional level by simply counting the individual links 

and summing their weights. In this paper, we first aggregate the weighted individual-level network on 

the plant level by summing up the weights of individual links between plants k and l by 

  𝑊𝑘𝑙 =  ∑ 𝑊𝑖𝑗𝑖∈𝑘,𝑗∈𝑙,𝑘≠𝑙 .      (4) 

We can also look at the unweighted version of the plant-level co-worker network, when edges 

between plant k and l are defined by  

  𝐿𝑘𝑙
𝑢 = {

1 𝑖𝑓 ∑ 𝐿𝑖𝑗 ≥ 1𝑖∈𝑘;𝑗∈𝑙;𝑘≠𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.     (5) 

The weighted network will be compared to the unweighted network in Section 3.1 in order to illustrate 

the importance of time-decay in the weight of individual edges.1 Eq. 4 will provide us with the 

opportunity to zoom into the networks within industry-regions, which is important to identify 

mechanisms behind MAR externalities. In the next step, we aggregate the network on the 

level of industry-regions by summing up the weights of individual links between industry-regions p 

and q as follows 

  𝑊𝑝𝑞 = ∑ 𝑊𝑖𝑗𝑖∈𝑝;𝑗∈𝑞 .     (6) 

This network will be used to identify the relation of industry-regions to other industry-regions 

within the same region in order to identify Jacobs externalities and to capture knowledge 

spillovers across regions as well. 

2.3 Data and processing 

                                                           
1 We have also looked at an alternatively weighted plant network using edge weights defined by 𝐿𝑘𝑙

𝑤 =
∑ 𝐿𝑖𝑗𝑖∈𝑘;𝑗∈𝑙,𝑘≠𝑙 . This alternatively weighted network has mixed characteristics. It behaves similarly to the 

weighted network in terms of accumulated sum of weigths (Column 4 in Table 1) and the probability distribution 
(Figure 1C). However, the distribution of this alternative weighted degree resembles the unweighted distribution 
(Figure 1B). 
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We use matched employer-employee data obtained from official registers from Statistics Sweden that 

–among a wide variety of data– contains age, gender, and detailed education code of individual 

employees and enables us to identify employee-employee co-occurrence at plants for the 1990-2008 

period. Data is generated on a yearly basis and if employees change workplace over the year, they are 

listed repeatedly with different plant codes in the same year. Geo-location of plants is defined by 

transforming the data from a 100m x 100m grid setting into latitudes and longitudes. For practical 

reasons, and in order to keep the size of the sample at the limit the network creation can handle, we 

exclude those without tertiary education from the data. As a result, the data contains 366,336 

individuals in 1990 and 785,578 individuals in 2008 and those plants are excluded where none of the 

employees had BA degree or above. There remained 52,872 plants in 1990 and 113, 441 plants in 

2008.2 

We used three characteristics of employees to generate subgroups specified in Equation 1: direction 

of education, gender, and age. For practical reasons, we select the most probable 50 co-workers of 

highest Pij for each employee in each year and trace these co-occurrences over the full period and look 

at those Lij when employee i and employee j work for two different firms. Then, Wij is given by Equation 

2 and 3. For further information of group definitions and descriptive statistics as well as for a 

discussion, why 50 co-worker ties from each year were traced and in order to follow the steps of the 

network creation except tie strength calculation, consult Lengyel and Eriksson (2015). 

In this paper, we aggregate the co-worker network on plant level and industry-region level and 

investigate the effect of the network on the growth of industry-regions. The number of plants varies 

considerably across industries; one can find most of the plants in services (most plants are in the 

sectors denoted by 2-digit NACE codes: 74, 80, 85, 50, 52) and the distribution of plants in 

manufacturing industries is a more even. Please, consult Appendix 2 for the distribution of plants 

across industries in 1992 and 2008. 

 

3. Network description 

3.1 The plant network 

The co-worker network grows monotonically over the full period; more and more plants are part of 

the network in each of the subsequent years presented in Column 2 of Table 1. These plants are 

connected with a monotonically growing number of unweighted links (Column 3). However, the 

increase of the sum of weights defined by Eq. 4 seems to slow down after 1996 and there is even a 

maximum in year 2002, after which it decreases slightly (Column 4). Thus, there are more and more 

weak ties in the network and the average weight of plant edges are monotonically decreasing (Column 

5). 

 

 

                                                           
2 The number of plants used for network creation is not identical with the number of plants that are actually in 
the network. This is due to the fact that the network is generated through labour mobility across plants. 



7 
 

Table 1. Nodes and links in the plant network, 1992-2008 

Year # plants ∑ 𝐿𝑘𝑙
𝑢  ∑ 𝑊𝑘𝑙  

Avg. 
weight 

1992 24,375 116,423 886,376.8 7.61 
1994 32,617 256,321 1,611,590 6.29 
1996 40,368 467,141 2,339,853 5.01 
1998 44,001 609,346 2,312,204 3.79 
2000 52,671 904,047 2,725,423 3.01 
2002 57,376 1,128,767 2,732,069 2.42 
2004 61,463 1,196,144 2,305,679 1.93 
2006 66,508 1,246,456 1,959,751 1.57 
2008 71,265 1,284,618 1,689,650 1.32 

There is a considerable difference between the dynamics of the unweighted and weighted degree 

distributions over the period. On the one hand, the probability that the plant has links to exactly 1 

other plant in the unweighted network is above 0.1 in both 1992 and 2008; and P(Dk) decreases 

identically up to degree 25 (≈101.4) in both years (Figure 1A). However, the probability of having higher 

degree than 25 rises from 1992 to 2008, which is because the maximum degree is higher in 2008 than 

in 1992 and the share of high degree plants is higher in 2008 than in 1992 (Figure 1B). On the other 

hand, the probability distribution of weighted degrees seems to have a very similar pattern in 1992 

and in 2008 (Figure 1C). The curve is only shifted down, which is only due to the increased number of 

plants. Furthermore, and most importantly, the Kernel density visualization reveals a normal 

distribution of weighted degrees in 2008 (Figure 1D). This means that the consideration of time in edge 

weighting – both co-working and decay – normalize the weighted degree distribution automatically 

over the period. 

Figure 1. Degree and weighted degree distributions of plants, 1992 and 2008 

(A) 

 

(B) 

 
(C) 

 

(D) 
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Note: (A) The probability that plant k has unweighted degree D, logarithmic scale. (B) Univariate Kernel density 

distribution of unweighted degree D, logarithmic scale. (C) The probability that plant k has weighted degree W, 

logarithmic scale. For practical reasons, weighted degrees were binned into 101 intervals for P(Wk) calculation. 

(D) Univariate Kernel density distribution of weighted degree W, logarithmic scale. 

The pattern of tie probability as the function of distance effect on is very similar in the two years we 

look at; probabilities are shifted down due to the increased number of plants and consequently 

increased number of possible ties (Figure 2A). 

Figure 2. The effect of distance, 1992 and 2008 

(A) 

 

(B) 

 
Note: (A) P(d) is the ratio between observed and possible ties at distance d. A 10 km resolution was used for 

binning distance distribution. (B) The average weight of plant ties at distance d was calculated by ∑ 𝑊𝑘𝑙𝑑 ∑ 𝐿𝑘𝑙
𝑢

𝑑⁄ . 

A 10 km resolution was used for binning distance distribution. Year 2000 was added to the plot in order to 

visualize temporal changes more in detail. 

One finds that both the median and the mean of average weights are almost constant and therefore 

independent from distance in 1992 (Figure 2B). The indicators remain constant until a certain distance 

– around 100 km – in 2008 as well and decrease only slightly in larger distances. However, the gap 

between the mean and the median opens up over the period denoting a left-skewed distribution with 

relatively few and outlier strong ties. Furthermore, the gap opens up even more in larger distances. In 

other words, the majority of distant co-worker ties are weak and they are getting weaker over the 

period but there are also strong distant ties, due to recent labour flows. 

Table 2. The number and weight of plant ties within regions and industries, 1992 and 2008 

 1992 2008 

 ∑ 𝐿𝑘𝑙
𝑢  ∑ 𝑊𝑘𝑙  ∑ 𝐿𝑘𝑙

𝑢  ∑ 𝑊𝑘𝑙  

Across regions 
38,551 
(33%) 

174,401.8 
(20%) 

520,309 
(41%) 

415,773.5 
(25%) 

Within regions 
77,872 
(67%) 

711,974.9 
(80%) 

764,309 
(59%) 

1,273,877 
(75%) 

SUM (100%) of links 116,423 886,376.8 1,284,618 1,689,650 

Across industries in the region 
54,227 
(70%) 

386,536.7 
(54%) 

612,856 
(80%) 

823,038 
(65%) 

Within industries in the region 
23,645 
(30%) 

325,438.2 
(46%) 

151,453 
(20%) 

450,839 
(35%) 

SUM (100%) of links within regions 77,872 711,974.9 764,309 1,273,877 

Note: regions denote the 72 functional regions in Sweden and are equivalent to labour market 

areas. Industries are defined by 4-digit NACE codes. 
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Around two third of the links and even higher rate of weights are concentrated within functional 

regions in the beginning of our investigation (Table 2). These shares are still high in 2008 despite their 

slight decrease that is due to inter-regional labour flows over the period. One third of local ties remain 

within industry borders in 1992; this share decreases over time. The edges within industries are 

stronger on average than the edges across industries. 

In sum, there is a considerable share of the plant network within industries in regions. We will play 

special attention to these networks by zooming into industry-regions and creating network indicators 

in Section 4, because these are the fields of specialized forms of knowledge spillovers and MAR local 

externalities. However, we also observe a larger share of links across industries in regions, which 

enables us to investigate the role of Jacobs externalities and knowledge spillovers across industries. 

This latter phenomenon will be addressed by looking at a network defined by Eq. 5 where not plants 

but industry-regions are the nodes. 

3.2 The industry-region network 

The dynamics of the industry-region network is very similar to the plant network. The number of 

industry-regions and the number of edges are growing over the full period but the sum of the weights 

takes its maximum at the half of the period (Table 3). Like in the plant network, the average weight 

across industry-regions decreases monotonically. 

Table 3. Nodes and links in the industry-region network, 1992-2008 

Year 
# industry-

region 
∑ 𝐿𝑝𝑞 ∑ 𝑊𝑝𝑞 

Average 
Weight 

1992 3,795 33,053 885,774.4 26.79 

1994 4,576 62,877 1,611,118 25.62 

1996 5,263 102,694 2,339,207 22.79 

1998 5,391 124,481 2,311,708 18.57 

2000 5,926 169,278 2,724,814 16.09 

2002 6,343 201,759 2,731,400 13.54 

2004 6,528 214,269 2,305,163 10.76 

2006 6,822 225,639 1,959,143 8.68 

2008 7,211 238,071 1,688,141 7.09 

The dynamics of weighted degree distribution of the industry-region network is very similar to the 

plant network (Figure 3). The probability distribution of weighted degrees seems to have a very similar 

pattern in 1992 and in 2008 (Figure 3A); the curve is shifted down from the beginning to the end of the 

period, just like in the plant network. The weighted degree distribution of the industry-region network 

becomes normal over the period (Figure 3B), just like in the plant network. 
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Figure 3. Weighted degree distributions of industry-regions, 1992 and 2008 

(A) 

 

(B) 

 
Note: (A) Weighted degree distribution of industry-regions in 1992 and 2008. The integer of weights has been 

used for binning. (B) Univariate Kernel density distribution of industry-region weighted degree, logarithmic scale. 

However, the weighted degree of industry-region p highly depends on the size of the industry-region. 

For example, the number of employees (Figure 4A) and also the number of plants (Figure 4B) in the 

industry-region is positively associated with the weighted degree.  

Figure 4. The strength of industry-regions in the co-worker network as the function of their size, 1992 

and 2008 

(A) 

 

(B) 

 
Note: (A) Strength of industry-regions by edge weights versus the number of employees by, 1992 and 2008. (B) 

Strength of industry-regions by edge weights versus the number of plants, 1992 and 2008.  

We plotted the weighted networks in years 1992 and 2008 (Figure 5). Since we used a spring algorithm, 

in which strongly related industry-regions are pulled together, and used identical colours for regions; 

the co-location of same coloured nodes in the plot illustrates the importance of co-location of 

industries in regions. In other words, co-located industries seem to develop strong ties over time in 

the weighted and weight-normalized network as well. We will investigate these spatial networks by 

creating node characteristics of industry-regions in order to reveal the effect of Jacobs externalities. 

However, there are strongly connected industry-regions that are not co-located. Inter-regional ties 

might be also important for knowledge flows and collecting new ideas. Thus, we will create another 

set of node characteristics looking at inter-regional ties of industry-regions. 
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Figure 5. Industry-region network, 1992 and 2008 

(A) 

 

(B) 

 

Note: Self-loops have been filtered out and only the giant component is visualized. Identical colors were used to 

illustrate regions (e.g. Stockholm is black). A spring algorithm was used to pull those industry-regions together. 

(A).The weighted industry-region network, 1992. Only the edges stronger than 1 have been illustrated. (B) The 

weighted industry-region network, 2008. Only the edges stronger than 1 have been illustrated. 

To sum up, the weighted co-worker network across plants and industry-regions promises us interesting 

insights into hidden mechanisms behind local knowledge externalities, which we discuss in the 

subsequent section. The plant-level network will be used to create indicators of MAR externalities, 

while the industry-region network will be used to test the prevalence of Jacobs externalities and skill-

relatedness. 

 

4. Results 

Fixed effect (FE) panel regression models are used in this section to explore the statistical relation 

between indicators derived from the plant-level and industry-level co-worker network and wage levels 

in industry-regions. In simple form, the equation could be specified as:  

  yi,t = β′Xi,t−1 + γ′Zi,t−1 + εi,t;     (7) 

where y denotes gross income per capita (WAGE), t denotes one-year intervals from 1992 to 2008, i 

denotes the industry-region, X stands for the set of explanatory variables, Z stands for a set of control 

variables of our base model described below and ε is the case- and time-specific error term. 

The rationale for using this type of model is that it allows us to control explicitly for unobserved 

institutional differences across industry-regions such as local labour market conditions not captured 

by the controllers or by the definition of industries and functional regions, which in itself may help 

reduce the impact of endogeneity. This is highly relevant in the Swedish case due to the great variety 

of local labour markets in terms of size, population, economic structure and the predominant tradition 

of local wage setting. By including a full set of time dummies and having all explanatory variables 

measured the year before the wage level indicators as explained above, the risk of unobserved time- 

specific heterogeneity and reversed causality influencing the results was also reduced. We present the 
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results of between effect (BE) models as well, when the argument demands it, and in order to provide 

a full picture of the empirical case. 

The applied control variables are provided by a base model that estimates the effect of absolute 

specialization on wage levels (Kemeny and Storper, 2014). Thus, we use the number of plants in the 

industry-region as a measure of absolute specialization (ABSSPEC) and also the number of employees 

with bachelor degree of higher as a measure of regional size (REGSIZE). The square of both of the 

previous indicators (ABSSPEC-SQ, REGSIZE-SQ) are applied in the models to control for non-linear 

effect of specialization and regional size. The average size of plants (AVGSIZE) is included in the models 

as well. Network indicators are introduced in the according subsections. All control variables are log-

transformed. Consult Appendix 3 for descriptive statistics and pooled pairwise Pearson correlation of 

indicators. 

We include all industries in the presented models because potential knowledge externalities are not 

limited this way as compared to excluding any of the sectors. We tested the models by looking only on 

tradable industries defined for Sweden by Eliasson et al. (2010), which did not change our main 

findings. The estimation strategy follows the papers’ line of argument. We first estimate the effect of 

the plant-network on wage levels in industry specializations. Then, we estimate the effect of networks 

across industry-regions. In all the tables presented below, we first run the regression for the full set of 

industry-regions; then we split the sample according to the size of functional regions in order to unveil 

regional differences. 

4.1 The plant-level network and Marshall-Arrow-Romer externalities 

In this subsection we uncover the effect of network density and triadic closure in the plant-level co-

worker network on regional development. Density is the simplest network indicator; it is measured by 

the share of observed links as compared to the number of possible links within industry regions and is 

formulated by 

  𝐷𝐸𝑁𝑆𝑝𝑡 =  
2×𝐿𝑝𝑡

𝑁𝑝𝑡×(𝑁𝑝𝑡−1)
  ;       (8) 

where Lpt is the number of observed plant-plant links and Nit is the number of plants in the industry-

region p at year t. According to the usual claim concerning social network density and diffusion, one 

can presume that density favours MAR knowledge externalities because a large share of observed links 

among possible links fastens information flow within industry-regions. 

Transitivity (triadic closure, global clustering) is another basic indicator that characterizes social 

networks. The measurement of the global transitivity calculates the number of triangles among all 

possible triangles and is formulated by 

  Trans𝑝t =
∑ #{𝑙𝑜 ∈ 𝑝𝑡|𝑙≠𝑜,   𝑙 ∈ 𝑁𝑘(𝑝𝑡),   𝑜 ∈ 𝑁𝑘(𝑝𝑡)}𝑘

∑ #𝑘 {𝑙𝑜|𝑙≠𝑜,   𝑙 ∈ 𝑁𝑘(𝑝𝑡),   𝑜 ∈ 𝑁𝑘(𝑝𝑡)}
;    (9) 

where k, l and o are plants in industry-region p at year t. The indicator measures the likelihood that 

plant l and o are connected if k has a link to both l and o. The connection between transitivity and local 

knowledge externalities is not trivial; the indicator might have either positive or negative effect on 

regional development based on two counteracting mechanisms. Triadic closure favours trust and helps 

collaboration of plants in the industry-region. On the contrary, a high level of transitivity also means 
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that the knowledge-base of plants is overlapping and therefore, the possibility of new knowledge 

combination in the industry region is limited. 

Table 4 presents the results of the fixed-effect regressions. Model 1 consists the co-efficients of the 

base model; the two network variables are inserted into Model 2; and the sample is split by region 

types in Models 3-6. The number of observations falls sharply from Model 1 to Model 2 because the 

indicators can be calculated only for those industry-regions with at least three plants. 

Table 4. Wage level and the plant-network within the industry-region 

 All regions All regions 
Metropol. 

regions 
Regional 
centres 

Middle-sized 
regions 

Small 
regions 

 FE FE FE FE FE FE 

 (1) (2) (3) (4) (5) (6) 

DENS  0.400*** 0.432*** 0.454*** 0.219*** 0.323*** 

  (0.022) (0.041) (0.031) (0.061) (0.101) 

TRANS  -0.095*** -0.060*** -0.108*** -0.092*** -0.049 

  (0.012) (0.022) (0.017) (0.034) (0.055) 

ABSSPEC 0.057*** 0.532*** 0.658*** 0.678*** 0.695*** 1.824*** 

 (0.007) (0.052) (0.112) (0.085) (0.164) (0.387) 

ABSSPEC-SQ 0.021*** -0.025*** -0.028*** -0.038*** -0.041*** -0.166*** 

 (0.001) (0.004) (0.007) (0.007) (0.014) (0.036) 

AVGSIZE 0.000 -0.006*** -0.023* -0.000 0.000 -0.006** 

 (0.001) (0.002) (0.013) (0.002) (0.004) (0.003) 

REGSIZE 0.541*** 0.174* 0.701 0.245 -1.988*** -2.525*** 

 (0.056) (0.101) (0.455) (0.441) (0.520) (0.591) 

REGSIZE-SQ -0.031*** 0.004 -0.009 -0.008 0.143*** 0.205*** 

 (0.002) (0.004) (0.017) (0.024) (0.034) (0.050) 

CONSTANT 6.551*** 6.051*** 0.580 5.821*** 14.242*** 13.292*** 

 (0.332) (0.650) (3.274) (2.057) (2.136) (1.991) 

YEAR FE Yes Yes Yes Yes Yes Yes 

R-sq 0.108 0.156 0.176 0.191 0.124 0.110 

N 84,804 14,676 4,487 7,320 2,103 766 

Note: Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 

The estimation results indicate a significant positive effect of DENS and a significant negative effect of 

TRANS both of which are stable across the models (transitivity looses significance in the smallest 

regions in Model 6). Due to the fixed-effect setting, these results imply that a growing co-worker 

network density is positively linked to wage levels because knowledge can flow more efficiently within 

the industry if new links across plants emerge over time. The same pattern of the density effect on 

regional development suggests that not only specialized regions can be characterized by Marshallian 

externalities but MAR type of learning prevails within industry specializations in urban agglomerations 

as well (Kemeny and Storper, 2014).  

The negative effect of TRANS is a very interesting and important finding and implies that the 

establishment of a new tie harms regional development if it closes a triangle in the network. In other 

words, regional development slows down when a new direct connection is established between two 

plants that were already connected indirectly with a mediation of a third plant because the redundancy 
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of the knowledge-base increases. Therefore, the robust negative effect suggests that the novel 

combinations of non-redundant knowledge might be important in Marshallian type industry-

specializations as well. 

The main controllers (ABSSPEC and REGSIZE) have the expected positive effect; however, we find a 

non-linear effect of both of these indicators because the squares turn to have a significant effect as 

well. REGSIZE looses significance when the sample is split to region types due to the small variation of 

the indicator. AVGSIZE has the expected negative sign in Models 2, 3 and 6 that is consistent with 

previous findings in Sweden. 

4. 2 The industry-region network, Jacobs externalities and skill-relatedness 

We explore the effect of intra-industry ties on regional development in two steps. First, we look at the 

connection between wage levels and the diversity of links of the industry-regions towards other 

industry-regions. Then, we also introduce the importance of links to skill-related industries to the 

model. 

The first indicator we define is the I-E index of industry-regions; this is the simple quotient of internal 

(I) links compared to the rate of external (E) links; therefore quantifies the openness of the industry-

region and is formulated by 

  𝐼𝐸𝑝𝑡 =  
∑ Wpqp=q

∑ Wpqp≠q
  .       (10) 

We also create three diversity indicators using Shannon type of entropy calculation that capture 

different aspects of the relation between inter-industry links and regional development. DIV(IN) 

measures the diversity of links of industry-region p at year t within the region and is formulated by 

  𝐷𝐼𝑉(𝐼𝑁)𝑝𝑡 = ∑
𝑊𝑝𝑞

𝑊𝑝

𝑞∈𝑠
𝑝∈𝑠  × log (

𝑊𝑝𝑞

𝑊𝑝
) ;     (11) 

where Wpq is the accumulated strength of ties between industry-region p and q, Wp is the strength of 

industry-region p and s denotes the functional region of industry-regions p and q. In a similar manner, 

one can also formulate DIV(OUT) as the diversity of links across regional borders by 

  𝐷𝐼𝑉(𝑂𝑈𝑇)𝑝𝑡 = ∑
𝑊𝑝𝑞

𝑊𝑝

𝑞∉𝑠,∉t 
𝑝∈𝑠,∈𝑡  × log (

𝑊𝑝𝑞

𝑊𝑝
) ;    (12) 

 where t is the 4-digit industry of industry-region p. Furthermore, we also define DIV(OUTSAME) that 

is the diversity of links to the same industries in distinct locations formulated by 

  𝐷𝐼𝑉(𝑂𝑈𝑇𝑆𝐴𝑀𝐸)𝑝𝑡 = ∑
𝑊𝑝𝑞

𝑊𝑝

𝑞∉𝑠,∈t 
𝑝∈𝑠,∈𝑡  × log (

𝑊𝑝𝑞

𝑊𝑝
) .   (13) 

We log-transformed the above diversity indicators, because only a very few of industry-regions have 

high number of connections, which eventually gives us a very long-tailed distribution. The minimum 

value of entropy is zero; while the indicator takes its’ maximum when the weights of the industry-

region is equally distributed among the connected industry-regions, which is the most diverse state of 

the distribution. Therefore, the positive effect of the above diversity indicators would suggest a 

positive relation between diversity and regional development; whereas a negative sign means the 

importance of the concentration of weights in certain links (Eagle et al, 2010). 



15 
 

Table 5. Wage level and links to other industries 

 All regions 
Metropol. 

regions 
Regional 
centres 

Middle-sized 
regions 

Small 
regions 

 FE FE FE FE FE 

 (1) (2) (3) (4) (5) 

IE -0.296*** -0.228*** -0.397*** -0.187* -0.076 

 (0.044) (0.084) (0.062) (0.112) (0.153) 

DIV(IN) -0.021*** -0.012 -0.023*** -0.026*** -0.017** 

 (0.003) (0.008) (0.004) (0.006) (0.007) 

DIV(OUT) -0.036*** -0.064*** -0.025*** -0.038*** -0.025** 

 (0.004) (0.008) (0.005) (0.009) (0.012) 

DIV(OUTSAME) 0.020*** 0.024*** 0.020*** 0.019*** 0.019*** 

 (0.002) (0.004) (0.003) (0.005) (0.007) 

ABSSPEC 0.047*** 0.086*** 0.010 0.001 0.280*** 

 (0.014) (0.033) (0.020) (0.034) (0.057) 

ABSSPEC-SQ 0.017*** 0.013*** 0.021*** 0.021*** -0.005 

 (0.001) (0.003) (0.002) (0.004) (0.007) 

AVGSIZE 0.000 0.002 -0.000 0.004 -0.002 

 (0.001) (0.012) (0.002) (0.003) (0.002) 

REGSIZE 0.441*** -0.284 0.337 0.111 -0.965** 

 (0.077) (0.435) (0.351) (0.373) (0.425) 

RERSIZE-SQ -0.025*** 0.011 -0.013 -0.007 0.070* 

 (0.003) (0.017) (0.019) (0.025) (0.036) 

Constant 7.296*** 10.570*** 7.298*** 8.928*** 12.354*** 

 (0.453) (3.060) (1.626) (1.453) (1.333) 

Year FE Yes Yes Yes Yes Yes 

R-sq 0.109 0.126 0.108 0.106 0.109 

N 43,018 10,227 21,454 7,716 3,621 

Note: Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 

Regression results containing the above IE and diversity variables are presented in Table 5, in which 

we run the regression for the full set of industry-regions first and then split the sample by region types. 

The findings imply that the openness of the industry-region is positively linked to wage levels. Thus, 

inter-industry knowledge externalities are important for regional development and prevail in all kinds 

of regions. 

The positive effect of DIV(OUTSAME) is expected because it means that the access to the same industry 

– and same knowledge – in diverse locations favours regional development, which is consequent with 

previous findings (Boschma et al, 2009). However, the negative effect of both DIV(IN) and DIV(OUT) 

indicators implies that not a diverse distribution but the concentration of weights across links to certain 

industries matters within and also across regional borders in every region types. This novel finding 

suggests that diversity per se cannot describe knowledge externalities in urban agglomerations, 

because the industries in place may benefit more from certain industries than from others. We argue 

in the remaining part of this section that the nature of these important links distinguishes urban 

knowledge externalities from externalities prevailing in specialized regions.  
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The concept of skill-relatedness is used to characterize the links across industries (Neffke and Henning, 

2013); when industries are considered to exploit similar knowledge base if the labor flow between 

them is higher than the expected labor flow given the size of the industry. Although skill-relatedness 

is a central concept in contemporary evolutionary economic geography, the local effect of skill-related 

links is still unclear because one has to calculate relatedness on an aggregate country level and 

therefore it is difficult to develop a theory of knowledge externalities from relatedness per se.  

We calculate the skill-relatedness of Swedish industries for 1990-1999 and 2000-2008 by following the 

formulation of Neffke et al. (2015): 

𝑅𝑝𝑞 = log 
𝐹𝑝𝑞𝐹..

𝐹𝑝.𝐹.𝑞
 ;       (14) 

where Fpq is the observed number of flows between industry p and q, F.. is the total number of flows, 

Fp. is the number of workers leaving industry p and F.q is the number of workers joining industry q. The 

log-transformation means that a positive value of Rpq denotes relatedness of industries p and q, while 

a negative value means that p and q are unrelated. 

Given the micro-perspective of the co-worker network approach, we can quantify the importance of 

related and unrelated ties as the function of region type. To do that, we simply calculate the quotiand 

of accumulated weights in related links as opposed to the weights in unrelated industries within the 

region and also across regional borders by 

𝑅𝐸𝐿𝑄(𝐼𝑁)𝑝𝑡 =   
∑ 𝑊𝑝𝑞

𝑞∈𝑠
𝑝∈𝑠 {𝑝𝑞 ∈𝑠|Rpq>0}

∑ 𝑊𝑝𝑟
𝑟∈𝑠
𝑝∈𝑠 {𝑝𝑟 ∈𝑠|Rpr≤0}

;     (15) 

and 

𝑅𝐸𝐿𝑄(𝑂𝑈𝑇)𝑝𝑡 =   
∑ 𝑊𝑝𝑞

𝑞∉𝑠
𝑝∈𝑠 {𝑝𝑞 ∉𝑠|Rpq>0}

∑ 𝑊𝑝𝑟
𝑟∉𝑠
𝑝∈𝑠 {𝑝𝑟 ∉𝑠|Rpr≤0}

;    (16) 

where s denotes the region of industry-region p; p and q are skill-related; p and r are unrelated, Wpq is 

the accumulated tie weights between industry-regions p and q, and Wpr is accumulated tie weights 

between industry-regions p and r. 

Consequently, RELQ(IN) and RELQ(OUT)indices condense two different mechanism in one indicator. If 

the sign of the estimator is positive in the regression models, then the share of related ties is important 

for the development of industry-regions. If the sign of the estimator is negative, then unrelated ties 

are more important for regional development than related ties. 

 

 

 

Table 6. Wage level and the importance of skill-relatedness 

 All regions 
Metropolitan 

regions 
Regional 
centres All regions 

Metropolitan 
regions 

Regional 
centres 

 FE FE FE BE BE BE 
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 (1) (2) (3) (4) (5) (6) 

RELQ(IN) -0.002 -0.007* 0.002 0.013** -0.035* 0.017** 

 (0.002) (0.004) (0.003) (0.005) (0.021) (0.007) 

RELQ(OUT) 0.001 0.007* -0.005 0.019** 0.009 0.012 

 (0.003) (0.004) (0.004) (0.008) (0.020) (0.010) 

IE -0.402*** -0.231*** -0.562*** 0.614** 1.373** 0.079 

 (0.060) (0.085) (0.091) (0.252) (0.540) (0.341) 

DIV(IN) -0.025*** -0.004 -0.025*** -0.067*** -0.144*** -0.056*** 

 (0.005) (0.010) (0.006) (0.011) (0.038) (0.014) 

DIV(OUT) -0.049*** -0.071*** -0.031*** -0.128*** -0.237*** -0.100*** 

 (0.006) (0.009) (0.009) (0.016) (0.041) (0.021) 

DIV(OUTSAME) 0.019*** 0.025*** 0.016*** 0.107*** 0.109*** 0.094*** 

 (0.003) (0.004) (0.004) (0.009) (0.021) (0.011) 

ABSSPEC -0.004 0.125*** -0.093** 0.292*** 0.297*** 0.233*** 

 (0.026) (0.042) (0.038) (0.027) (0.072) (0.048) 

ABSSPEC-SQ 0.023*** 0.010*** 0.034*** -0.000 -0.003 0.017*** 

 (0.002) (0.003) (0.004) (0.003) (0.007) (0.006) 

AVGSIZE -0.008*** -0.005 -0.009*** 0.014** 0.047 0.021*** 

 (0.003) (0.012) (0.003) (0.006) (0.034) (0.008) 

REGSIZE 0.855*** -0.024 0.141 0.260 2.664 -0.289 

 (0.133) (0.448) (0.539) (0.494) (3.781) (2.020) 

RERSIZE-SQ -0.035*** 0.002 0.011 -0.021 -0.132 0.014 

 (0.005) (0.018) (0.029) (0.028) (0.169) (0.111) 

CONSTANT 4.442*** 8.789*** 7.774*** 6.079*** -8.663 8.253 

 (0.901) (3.142) (2.542) (2.046) (21.248) (9.065) 

Year FE Yes Yes Yes No No No 

Region FE No No No Yes Yes Yes 

Industry FE No No No Yes Yes Yes 

R-sq 0.108 0.125 0.106 0.813 0.926 0.846 

N 23,698 9,391 11,495 23,698 9,391 11,495 

Note: Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01. 

Table 6 consists regressions for the whole set of industry-regions and the subsamples of metropolitan 

regions and regional centres. Model 2 imply that unrelated ties across industries are more important 

in urban agglomerations than related links. This important findings suggests that novel combination of 

knowledge is more likely in metropolitan regions with a high degree of unrelated variety than in other 

locations (Frenken et al, 2007). Furthermore, ties to related industries in other locations are more 

important for development than ties to unrelated industries in other locations, which is consistent with 

previous findings (Boschma et al. 2009). 

We ran between-effect (BE) regressions with region and industry fixed-effects as well in order to 

provide a more detailed picture about the relatedness effect. The comparison of Model 5 and 6 reveals 

the different nature of knowledge externalities prevailing in urban areas versus the ones operating in 

smaller regional centres. Those urban industries are more developed that are linked with higher shares 

of weights to unrelated ties than an average of urban industry. Similarly, those industries in regional 
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centres are more developed that are linked with higher shares of weights to skill-related ties than an 

average of industry in regional centres. 

We claim on the basis of the findings presented in this subsection that not diversity per se – as 

suggested by the Jacobs-type of literature – distinguishes urban knowledge externalities from the ones 

that prevail in smaller more specialized regions. It is the links to unrelated and related industries that 

tells knowledge externalities in metropolitan areas from smaller towns. 

 

5. Discussion 

The paper provides a new empirical perspective for analyzing the role of social networks in regional 

development. We argue that co-worker networks are important tools for knowledge transfer across 

plants and companies because co-workers develop mutual trust and cognitive proximity, which can be 

maintained even after the termination of the co-workership. By generating a large-scale co-worker 

network and analyzing its’ effect on regional development, we illustrate that the network indeed gives 

us a previously unprecedented insight to the operation of local knowledge externalities. 

We find that the density of the network within industry-regions favours their development because 

knowedge might flow faster in environment with denser social networks, which is consequent with the 

previous literature on MAR externalities. However, we also find that triadic closure is negatively 

associated with wage levels, which suggests that redundant links and consequently redundant 

knowledge harms development, and novel combinations of knowledge might be important for industry 

specializations as well.  

When looking at inter-industry links, we find that it is not diversity per se that distinguishes knowledge 

externalities across region types. We provide evidence that the share of unrelated ties, and 

consequently the likelihood of new knowledge combinations, favours development of industries in 

urban areas; whereas strong links to related industries are important for industry development in 

smaller regional centres. 

The presented empirical case is not without problems. Endogeneity issues might have remained in the 

regressions even though we used lagged values of the independent variables. This is because a large 

share of co-worker ties are generated by labour mobility, as it was discussed in details in Lengyel and 

Eriksson (2015), and because wage level differences are important forces behind labor mobility. 

Therefore, there is a potential causality problem that the next versions of the paper shall solve.  

Since our methodology opens up the possibility of employing a micro perspective, one can analyse 

networks aggregated on various levels including individuals, plants, firms or industries. Further 

research might devote attention to the effects of co-worker network’s structure on other aspects of 

regional dynamics like firm entry, investment flows, entrepreneurship or employment growth 

introducing further sector-specific characteristics into the analysis. For example, employees might 

learn more in those co-worker networks where the industry-specific knowledge is easier to transfer. 

One might be also interested how the strength of weak ties – as Granovetter put it – applies to the 

effect of co-worker networks on innovation performance. Another aspect related to this study is 

whether these processes are shaped by the Swedish context or are more generalizable. Last but not 

least, we shall further develop our homophily-biased random network approach by introducing the 
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effect of group diversity, time and triadic closure and fit the model to real social networks in firms, 

which might open a new horizon for creating social networks from co-occurrence data. 
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Appendix 1. Lambda selection for the time decay function in the co-worker tie strength 

 

 

We demonstrate tie strength for three scenarios, when i and j are working together for (1) one year, 

(2) five years, and (3) ten years: the solid ascending line represents the strengthening ties and this line 

is breaked at t=1, t=5, and t=10. Then, we introduce three different exponential time decay curves that 

have three different lambda values. Jin et al. (2001) used lambda=0.01 for simulating network 

dynamics; however, this might be not efficient in our case because we have only few time steps 

(maximum 20). On the contrary, lambda=0.1 would produce too sharp decay for ties established over 

a long period of co-working. If lambda=0.05, the tie strength of the scenarios drops to a pre-defined 

level of strength by reasonably different time scales. For example, for those working together for one 

year only tie strength will fall below 0.5 by the fourth year after co-workership termination, whereas 

seven years and eight years are needed to drop to that level for those working together for five years 

or ten years, respectively. 
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Appendix 2. Industry representation in the plant network 

 



23 
 

Appendix 3. Indicators, descriptive statistics and correlations 

 Variable Obs Mean 
Std. 
Dev. 

Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 WAGE 101386 9.447 1.191 7.006 15.198 1.0000             

2 IE 101386 0.024 0.074 0 0.999 0.238* 1.0000            

3 DENS 25006 0.579 0.368 0.002 4 0.027* -0.127* 1.0000           

4 TRANS 15752 0.382 0.312 0 1 0.237* 0.277* 0.327* 1.0000          

5 DIV-IN 65955 -0.200 1.656 -3.132 11.609 -0.379* -0.241* 0.348* -0.012 1.0000         

6 DIV-OUT 77494 -0.071 1.518 -2.912 11.651 -0.444* -0.253* 0.413* -0.087* 0.491* 1.0000        

7 DIV-OUTSAME 59442 3.138 1.913 -1.021 12.341 0.352* 0.173* -0.229* 0.026* -0.350* -0.393* 1.0000       

8 RELQ-IN 36958 -2.064 3.118 -17.496 9.935 -0.120* -0.242* 0.376* -0.094* 0.187* 0.381* -0.295* 1.0000      

9 RELQ-OUT 63232 -0.505 1.991 -12.880 11.399 0.132* 0.080* 0.091* 0.059* 0.011 0.098* -0.117* 0.368* 1.0000     

10 ABSSPEC 101386 4.315 1.870 0 11.177 0.596* 0.354* -0.509* 0.068* -0.551* -0.500* 0.370* -0.240* 0.054* 1.0000    

11 ABSSPEC-SQ 101386 22.120 16.519 0 124.931 0.585* 0.409* -0.507* 0.060* -0.555* -0.517* 0.391* -0.276* 0.039* 0.956* 1.0000   

12 AVGSIZE 101386 31.822 6.373 14.373 64.458 0.037* 0.023* 0.089* 0.073* 0.161* 0.083* -0.202* -0.068* 0.021* 0.016* -0.008 1.0000  

13 REGSIZE 101386 8.793 1.690 2.303 12.528 0.113* 0.087* -0.252* -0.077* -0.395* -0.173* 0.181* 0.186* 0.089* 0.359* 0.383* -0.135* 1.0000 

14 REGSIZE-SQ 101386 80.168 29.968 5.302 156.95 0.110* 0.089* -0.245* -0.078* -0.400* -0.178* 0.187* 0.193* 0.091* 0.361* 0.392* -0.194* 0.991* 

Note: * denotes that the co-efficient of pair-wise Pearson correlation is significant on the 1% level. 


